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Kolter [l] reduced the first basic problem of the plane theory of elasticity, 
for an arbitrary doubly-periodic network, to a Fredholm integral equation of 
the second kind. 

The method of solution of a doubly-periodic, plane, theory of elastlclty 
problem, for a network formed by the exterior of congruent holes, was out- 
lln’ed In [ 21 , 

We present below the basis and further development of the above mentioned 
method. Also, the problem of reducing the doubly-periodic network to an 
equivalent uniform sheet Is presented and solved. 

1. Consider a doubly-periodic network. Let 

01 = 2, 02 = 2Zeia (l>O, Im 02>0) 

be the basic periods, D be 

radius of the holes (Fig.1). 

with the center at the point 

the region occupied hy the body and X the 

Further, let L,, be the contour of the hole 

P = mm1 + no2 (m, n = 0, &- 1, f, . ..). 
L = UL,, be the boundary of the region D and 

co the region D with the associated boundary. 

For simplicity, let us assume that the net- 

work is symmetrical about the axes x and 1/, 

and that the system of forces on the contours 

of the holes are the same, self-balancing and 

possessing the same symmetry as the network. 

In the case of the first basic problem, the 

system of forces on the contours of the holes 

Is given. In the second basic problem, the 
Fig. 1 
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condition of Its solution In the class of problems with doubly-periodic Stress 

distributions Is the quaslperlodlc nature of the given displacements at the 

contours L.. , For the symmetry of the problem, It Is necessary that the 

displacements at the contour L.,~ be symmetrical about axes x and y . 

According to [3], the above problems can be reduced to finding two func- 

tlons CD (2) and Y (z), analytic ln.JI, from the system of boundary conditions 

e@ (z) + 0 (z) - @D' (z) + Y (z)} ezie = fl + if? (1.1) 

1 

1 \N - iT for the 1st 
8= --x fl + if2 = \- ZGe%(v f iu)/ds 

basic problem 
for the 2nd 
basic problem 

r E LVI (m,n = 0, fl, f , . . .) , x = (3 - f-4 / (1 + p) 

Here, N and p are the normal and tangential components of the forces, 

acting on the contours of the holes, u and v are the displacements in the 

x and y directions, respectively, 0 la the shear modulus, p Is POlEsOn'S 

ratio, 8 Is the angle between the normal to the contour of the hole and the 

x-axle and s ie the coordinate distance along the curved contour L,. . 

The boundary conditions (1.1) on the system of contours L_ can be re- 

duced to a functional relationship on the contour of any one hole, If we sub- 
ject functions m,(Z) and y(z) to the conditions, arising from the perlodl- 

city of the problem [2] 

@ (z + 4 = @ (4, @ (5 + o*) = <D (2) (1.2) 

Y (2 + WI) = Y (2) - o,w (z), Y (2 + (JJ = Y (2) - op (z) 

!l!he conditions of symmetry lead to Equations 

Q Gii, = -0, 0 (- z) = 0 (2); Y (T) = Y (z), Y (- 2) = Y (2) (1.3) 

2. Let us investigate, ln the region D , a system of functions formed 

from the various derivatives of the functions 

YB (4 = f + Ix’{& - g->, Q (4 = z’{ (z _p,)2 - 24 - $> (2.1) 
m,n m,n 
z = z +- iy, P = mol + no2 (m,n = 0 fl, f , . . .) 

Here v(Z) 1s the elllptlc function of Welerstrass, and Q(a) Is the 

special meromorphlc function. 

Our problem Is to find functions a(z) and Y(z), analytic In D, satls- 

fylng conditions (1.2) and (1.3). Towards the end, let ua establish the 

necessary properties of the functions (2.1) and their detilvatlves. 

We have the relationships 

Q (2 + 4 = Q (4 + 0,~ (4 + 71 
Q (2 + 4 = Q (4 + 6~ (4 + rs (2.2) 
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z to zeiz/s. By virtue of the congruency of the system P = 2m f 2neizr3 
and Pe-iz/s = 2n -j- 2me-iz!3 (m, n = 0, fl, t. . .) we have the relatlon- 
ships 

5 (geials) = +1’33 (z), 0 (zei~!3) = e-~i7~3p (z), Q (zeiri3) - e-3izs’3Q (5) (2.11) 

Assuming In the first equation (2.11) z = )+ and considering Equations 

b ). = ~C(+IJ, ) and ba = 26(&l,) > we arrive at the Equation (2.9). 

Analogous considerations are also valid for a square network. 

From (2.9) to (2.11) and (2.7) we can find the magnitude of the COnStantS 

for regvlar networks. 

a) Regular triangular network; W1 = 2, a.2 = %ix/3 

6, = +, & = &_ ne-i-!3, 71 = 0, yz = 0 (2.12) 

b) Square network; o1 = 2, O2 = 2i 

6, = If&, 6, = - llzi3t, 72 = ir,, 71 + 0 

3. Let us seek functions Q(z) and Y(z) In the form 

(2.13) 

Im a2k = Im pzl; = 0 (k=O,l,...) 

It Is easy to show, using the Identities (2.2), that Equations (1.2) are 

here satisfied. 

Further, It follows from the network symmetry that the periodic systems 

p = mm, + no2 ad P* = m*& + n*3, (m, n, m*, n* = 0, f 1, f, . . .) 

are congruent. Consequently, we have Equations 

l#Pk) (z, F) = @(2k) (z, P), QW+U (z, p) = Q@k+l) (z, p) 
(3.2) 

Thus 

,&Pk) (;) = #'Lk' (z), Q@k+l) (;) = Q(*k+l),(Z) (3.3) 

From Equations (3.3) It Immediately follows that functions (3.1) satisfy 

conditions (1.3). Thus, the requirements of perlodlclty and symmetry are 

satisfied. We would also note that the forms (3.'1) can be obtained directly 

from Equations (1.2) and (1.3). 

We will now impose on Expressions (3.1) the condition that the resultant 

vector of all the forces, acting on the curve joining two congruent points 
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in D , be equal to zero, It is easy to see that this condition is equiva- 
lent to Equations 

g (2 + WI) - g @? = 0, g (2 -I- 0%) - .LT (z) = 0 (3.4) 

where 
-_ 

g (2) = 9p (z) i- 24, (2) -f- $fZ)I rp (8) = p @ (2) d& g(z) = $ Y (2) dz 

Substltutfng Expressions (3.1) into (3.4) and considering Equations (2.21, 

f2.T) ana (2.93, we obtain 

a, = KodzP + K,P,P, PO = KtaQ? + KS&h2 (3.5) 

I.& ‘as expand the functions (3.lf into Laurent series about zero 

where 

We shall assume, that It is possible to expand into a Fourier series the 

right-hand side of the functional relationship (1.1) on the conf~ur LOO . 

Due to the symmetry or the problem, this series has the form 

fi -j- ifs = i A&f@, Imif&=O fS.Tj 
k=-ar 

Substituting the series (3.6) and (3.7) into Egu&tions (1.1) on Loo , we 
shall &et, after some transformations, an infinite algebraic system of equa- 

tlons for the coefficients a21+z 
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Adi+ 
r 0.0 

+ K2 + (I+ 8) KoKsV 

I- (1 + e) K&a 

r 
Ok+21 P&+1 

o,k = - 22”+3 + 

Ok + 4) ! gk+&’ (1 + e) K3h2 gk+l J_ 
21 (2k + 2)! pk+4 + 1 - (1 + e) KS 22k+“- L 

4-e (k = 1, 2, . . .) 

Tj.0 = - 
(23'+2) Pj+l 

+ 
t.3. + 4)! gj+p 

22jt2 2! (2i + 2)! 22j’+a 
+ (2 +e) Ko?-.~ gj+l 

1- (1 +e)K#F + 

co (2i+ 2i+ I)! &+lgj+i+lh4i+2 
+CZ (23’ + l)! (2i)! 22j+4i+4 

(/. = 1 2 
, ,... 

) 

i=l 

r&k = rk,j = - 
(21’ + 2k + 2)! Pj+k+l 

(2i + l)! (2k + l)! 22jt2kt2 + 
(23’ -k 2k + 4)! gj+k.+zka 

(2i + 2)! (2k + 2)! Zajtzkt4 + 

M (21 $ 2i + 1)! (2k + 2i f 1)! gj+i+lgk+i+lh4”” 
+CZ 

i=. (2i + I)! (2k + I)! (2i + I)! (2i)! 2G+2k+4i+* + 

+ (i, k = 1, 2, . . .) 

Ebj = AG+~ - 

eb, = A2 - AoK@ 

1 - (1 + e) Klh2 ha-2 

(2i + 1) AoI,2i+2 O” gj+l (2i + 2k + 3)! gj+k+aI.2k+2j+4 
1 - (1 + e) K&a 22j+2 - Ix 

k=o (2i)! (2k + 3)! 22j+*+4 
A-e-2 

For the constants ,Bp,+p we get Equations 
(3.9) 

Pa= i I-((1 + e)KS - A, + (1 + 8) Koh2a, + (1 + 8) ; gk;;;;;a2kt2} 

k=l 

co 

P2jt4 = (xi + 3) azjt2 + 8 2 
(2i + 2k + 3)! gj+k+$b2i+2k+4 

~k+2-_~-~_?(i=“.lr...) 
k=O (2j + 2)f (2k + I)! 22j+zkr4 

This conclude5 the construction of the solution. 

4. We shall show, that If the holes In the network do not touch or lnter- 

sect, then, with certain assumptions on the loading, the forms (3.11, together 

with Equations (3.8) and (3.9), give required solution. 

It Is easy to derive the following valid estimates 
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/~,l<$, M>O @=2, %...I (4.1) 

where M 1s some number, and II Is one half of the distance between two 
closest congruent points. 

Let the coefficients Aak, In the expansion (3.7), satisfy the Inequality 

(4.2) 

Under the conditions (4.2), the system (3.8) has a unique finite solution, 

with lim Q,+~ = 0 when j + m . 

Indeed, using (4.1), It Is easy to get estimates (*) for thecoefficlenti and 

free terms of the system (3.8) 

(2j + 1) 62j+~k+2, 

(4.3) 

As a result of the first estimate (4.3), the double sum Z/a,,l;) converges, 

which, together with the second estimate (4.3) provides a sufficient condl- 

tlon for the exlstance of a unlque finite solution of the system (3.8). 

Using the estimates (4.3), we get from (3.8) 

laaj+2l<M{(2i + 1) ij2j+ (&)'"l}, 0 < 6 < 1 (i=O,i _..) 

The assertion has thus been proved. 

For val 

1 P2j+2 1 

Let us 

ues of BaJ+a we have estimates 

<M (47 
1 

- 1) p + (&Jh} , 0 4 6 < 1 (i = 0, 1, 

Investigate the functions 

. . 

(4.4) 

.I 

(4.5) 

9 (2) = a,2 - a2h25 (z)+ 5 L%&+2 i2k;.;y;;(z) 
k=l 

9 (2) = poz - p2h2[ (2) + i p,,,, ‘2k~~~~~\(z’ - i apkt2 hw+2Q(2k) (‘) 
k=l k=o (2 + I)! 

(4.6) 

cp (4 = 1 @ (4 dz, $ (4 = i y (4 dz 

With 0 < 6 < r < i , the series (4.6) converge absolutely and uniformly 

In the closed region D”. 

*) Under condition 0 < h < hl, Expression 1 -(lfs)K1~2 Is non zero. 



Strew ud dieplaaeamto la an eleetia sheet 537 

Indeed, it Is eaay to show, that if t is located in the part of Do, 

inside the basic periodic parallelogram, we have the inequalities 

XI 
1 

(2 - ly*+a I -+i (k=1,2,...) 
mn 

Using (2.1), we have the estimates In Do 

Using (4.4), (4.5) and (4.8), we get 

00 

Xla 

~2k+2@M-l) (z) 

2kt2 
k=l 

(2k + I)! 

aani2 

~2*~2Q(~) (z) 

(2k + t)! 

l-al (k84X-2+ $i) 

j<A~l(kd~ ++i) 

(4.7) 

.f (4.8) 

The assertion has thus been proved. The regularity of the functions &) 

and ~(8) In D and their continuity In Do follow from the relationship 

cp (2 + 4 = 4p (4 + c,, 

rp (2 + 02) = cp (2) i- c,, '11, (2 + %J = 9 (4 - O,Q (2) + 62 

which are satisfied by the series (4.6). 

The basic problems for the doubly-periodic network, formulated In Section 
1, could have been presented as boundary problems for the functions &) 
and I(x) l 

Also, the system (3.8) and Equations (3.9) could have been 
obtatied starting from the re resentatlon (4.6). All the operations per- 
formed on (4.6) to obtain (3.8) and (3.9) are Justified because of the abso- 
lute convergence (4.6) in the closed region D . 

Thus, if the constants satldfy the s stem (3.8), and the constants 
R are obtained from 
t~~&ctlons V(Z) 

then, with O< <hl, the series (4.6) define K 
which are analytic In D and continuous in 

DO and represent the the stated problem. 

5, Let us investigate the problem of reducing the doubly-periodic net- 

work to an equivalent uniform sheet. 

Let there be In the network the average stresses ox’= u,, ulo= ua and 
OI 7x1 T1a = 0 . The functions @(a) and Y(Z) have here the form 

a, (z) = lip (61 + a2) + cf, (4% ys (4 = l/2 (62 - 51) + y (4 (5.4) 

where H(~) and y(g) are defined by the series (3.1). 

It is easy to see that the displacements, in the class of problems defined 

by the functions (5.1), are quaslDeriodic functions. 
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Indeed, the displacements have the form f3] 

Let us assume 

Substituting the series (4.6) into (5.3), and using (5.11, (2.2) and (2.8) 

we get 

fz =WM--EL 02 -c&- 
1 -p 01 --WI _t a&2 ($ -x8,) +p,z$ + 

2 1-i-P 2 

Let us now consider an orthotropic uniform sheet under unlforr tension 

0, = a,, 0, = a,, To 00. 

&ok's law, For an orthotropic medium, h8S the fWm ES] 

ffere gl* and &* are the moduli of elasticity In the direction of the 

main axes x and u , p2* and gIp* are the corresponding Po1sson~s ratios 

and c* the modulus of the elastisity of the second type. 

From (5.5), we can find the dlsplaoaments of points in the uniform sheet 

Equations (5.7) establish the quaslperiodlcity of the displacements (5.6). 

We shall now introduce the equivalence notion between the uniform sheet 

and the doubly-periodic network. 3n general, an equivalent untiorm sheet is 

understood to be 8 sheet, the stiffness of which is equal to the stiffness 

of the sheet with the holes. This means, that under the same Loading the 

average displacements of such sheets are equal. Par the class of problems 
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under investigation, these displacements are quasiperiodic functions. 

We shall denote the doubly-periodic network and the uniform sheet as equi- 

valent, If under the same loading we have equalities 

Q2, = S&*, Q2, = i-&* (5.8) 

where n, and Cl, are defined by (5.4), and Cl,* and n,* by Equations (5.7). 

Equations (5.8) reflect the fact that the displacements of any point o 

relative to Its congruent point z t mut, + nwl (m, n - 0, *l, f,. . .) in the 

uniform sheet and In the doubly-periodic one are equal. 

Substituting Equations (5.4) and (5.7) into (5.8), we get 

Expressions (5.9) provide a complete system of equations for the deter- 

mination of the three independent reduced elastic parameters E,*, Ea*and cl,*. 

For the determination of the fourth parameter G* we can form analogous 

expressions for average stresses 0, = U,= 0, 710 = 7 . 

We shall form them for the case of a square network. 

Let us first assume in (5.9) that U,= Ua- u . Then, the first equation 

(5.9) yields 

K*?(l-_II1+)= 1 ) f 
E/(1-p) i 1-P 

wQ,h2 - (6, + 4K,) a,h81)-1 (5.10) 

Here (I~ and ~~ must be obtained from the solutlon of the coi*respondlng 

doubly-periodic problem with average stresses u, = u,= 0, T,~ = 0 . 

Further, multiplying the first expression (5.9) by tupr the second by u),, 

subtracting the second expression from the first and using (2.7) snd (2.10) 

we obtain 

E E _. -. - - = 
ES* El* 

(5.11) 
mwa -@1Q 
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In J&u&ion 15.11)1 the value af aa Is the same as in Equation (5.10). 

Let now the average streases be CA I - oa- d , rlo I 0 . 

From the first equation (5.9), we obtain 

Nere, the value of a2 and fls must be determIned from the solution of 
the doubly-periodic problem with average stressea Q, --up- or ~,a = 0 . 

Combining the first and second sxpressions (5.9), we obtain an equation 
equivalent to (5.11). 

Let us investigate the case, more Xnterest.%ng from a practical point of 
view, of a regular network. In this case, in solving the doubly-periodic 
problem with average stresses u, * ash 0, T= - 0 the magnltude of cs- 0 
and ss is non zero. Consequently, from-(5.11) we obtain 

(5.13) 

Further, from (3.5) we fbtd 

KA 1 = 8 sin a 

~ubs~~tut~~ the value of rI 

Sr 
~.--” 

4 > (5.14) 

k*om (5.18) into Equations (5.lU) and (5.12) 
and considering the fact thst in the solution oF the problem with average 

stresses 0, =-a,= u t T*I’O, we have aa= 0 and a,#O,weobtati 

a) Regular triangular network; ox = 2, 0, = 2ein/a 

b) Square network; wI = 2, 0, i= 2i 

fBnce the regular trfengulfir network fs isotropic in the sense of the 
reduced elastic parameters, it follows that Equations (5.15) determine fully 
the elastic characteristics of the equivalent uniform sheet. 

For the square n&work ft is necessary to detexM.ne the magnitude of 0”. 
For this reasont fet LIB investigate a doubly-periodic network with average 
StreSSeS o,= ffp' 0, lx*'? * 

Perfor- an ant;id.ockulse rotation of the coordinate system of 45”, we 
change the problem to a aymmertlcaL one with average stresses, in the new 
coord%nate system do@': &so = - Oy~' = a, Z,yp = 0. 
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Following the same steps as In the derivation of Equations (5.91, we 

obtain 

Gl’ + a,h2 (r,’ - x6,‘) - a,h2 (8, + ?I’) = &$ 
-# 

3,’ + a2?b2 (y2’ - x8,‘) - a2h2 (6, + T2’) = &i$ 

(5.17) 

where the primed quantities refer to the basic periods 01' = %Yint' and 

02' = &in/4 of the network In the system of coordinates x'oy‘. 

we 

Using the following easily established equalities 

8,' = &&/4, 6,' = &f+l4, rI' = ~I&"lQ, r2) = rae9i”/4 (5.18) 

obtain from (5.17) 
c* -= &+3E]-l 

(B) at Point B . 
1. Regular triangular network; o1 = 2, cc* = 2ein13; the edges of the holes 

are force free 

a) Average stresses U1= 1, Us= 1, 713= 0 

x = 0.2 0.4 0.6 0.8 0.9 

o,(A) = 1.10 1.45 2.27 4.70 9.66 
Ue (B) = 2.07 2.35 3.09 5.70 10.79 
U,(B) = 0.0000 0.0000 0.0000 0.0004 0.0087 

b) Average stresses Us= 1, Ul=O, $s,,= 0 

5 = 0.2 0.4 0.6 0.8 0.9 

be(A) = 1.03 4.23 2.00 4.72 9.20 
bg (B) = 3.09 3.31 3.62 5.55 10.70 
a,(B) = 0.0000 -0.0000 0.0018 - 0.008 0.060 

2. Regular triangular network, the holes contain rigid rings 

a) Average stresses u1 = 1, u3= 1, rIa = 0 

1 = 0.2 0.6 0.8 0.9 

or(A) = 1.01 ;ii 1.10 1.20 1.47 
or(B) = 1.51 1143 1.32 1.27 1.55 
a, (A) = 0.95 0.81 0.61 0.38 0.26 
Q@ (B) = 0.45 0.43 0.40 0.38 0.26 

b) Average stresses u,= 1, Ua= G, tlz=O 

I. = 0.2 0.4 0.6 0.8 0.9 

r(A) = 1.06 1.23 1.43 1.64 1.90 
Ur (B) = 1.49 1.44 1.44 1.59 1.90 
o,(A) =-0.03 - 0.09 -0.08 0.12 0.32 
og (B) = 0.44 0.43 0.43 0.46 0.46 
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3. Square network; 
free 

ox = 2, oz = 2i; the edges of' the holes are force 

a) Average stresses ox= $, SIQ= 1, z12 =0 

E. = 0.2 0.4 0.6 0.8 

00 (/I) = 1.10 1.46 2.25 4.65 
50 (B) = 2.07 2.36 3.19 5.75 
cTr (8) = 0.0000 0.0002 0.0001 -0.0050 

b) Average stresses c$ = 1, 61 = 0, z,, -= 0 

h = 0.2 0.4 0.6 0.8 

a,@) = 1.15 1.34 2.10 4.63 
,sO (B) = 3.00 3.11 3.61 5.78 
br (B) == 0.0000 -0.0002 -0.0009 -0.0017 

4. Square network and the holes contain rigid rings 

a) Average stresses r&= 1, ~1~ = 1, ~~~ = 0 

h = 0.2 0.4 0.6 0.8 

d, (‘4) = 1.02 1.08 1.18 1.44 
6, (B) zz 1.51 1.45 1.39 1.48 
6s(A) = 0.95 0.80 0.58 0.35 
cJ@ (B) = 0.45 0.44 0.42 0.45 

b) Average stresses U, = 1, (Jo=: 0, zIz = 0 

0.9 

9.58 
10.63 
-0.0289 

0.9 

9.51 
10.60 

-0.0060 

0.9 

1.86 
1.83 
0.41 
0.56 

h = 0.2 0.4 0.6 0.8 0.9 

b?(A) = 1.07 1.25 1.48 1.74 2.12 
by (B) = 1.50 1.50 1.52 1.71 2.08 
cig (A) = 0.02 -0.04 0.00 0.20 0.43 
S&(B) = 0.45 0.45 0.46 0.51 0.65 

Using the solutions to the problem given above, we can establish the 
reduced elastic parameters of regular 
networks 
!Phe curves of E*/.. and u*/c( for 

regular triangular networks, when the 
edges of the holes are force free, 8re 
given fn Big.2. 

Fig. 2 Fig. 3 



For the case when the holes contain rigid rings, the respective values 
are given in Fig.4. 

4 

2 2 

0 f 

Fig. 4 w3. 5 

The curves of P/E, p*/p and p/O for a square network, when the 
edges of the holes are force free, are given ln Flg.3. 

The variations of the same variables for the c8se when the holes Contain 
rigid rings Is shown ln Plg.5. 

In conclusion the author expresses his th8nks to L.H.Kurshln for useful 
comments and valuable advice. 
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