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Koiter [1] reduced the first basic problem of the plane theory of elasticity,

for an arbitrary doubly-periodic network, to a Fredholm integral equation of
the second kind.

The method of solution of & doubly~periodic, plane, theory of elasticity

problem, for a network formed by the exterior of congruent holes, was out-
lined in [2].

We present below the basis and further development of the above mentioned
method. Also, the problem of reducing the doubly~perlodic network to an
equivalent uniform sheet 1s presented and solved.

1. Consider a doubly-periodic network. Let
o = 2, oz = 2le* (>0, Im w;>0)

be the baslc periods, D be the region occuplied hy the body and i the
radius of the holes (Fig.l). PFurther, let L,, be the contour of the hole
with the center at the point P == mo1 + nw: (m,n =0, +1, £+, ...),
L = ULy, be the boundary of the region D and
2° the region D with the associated boundary.

For simplicity, let us assume that the net-
work is symmetrical about the axes x and y,
and that the system of forces on the contours
of the holes are the same, self-balancing and
possessing the same symmetry as the network.
In the case of the first basic problem, the
system of forces on the contours of the holes
is given. In the second baslic problem, the
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condition of its solution in the class of problems with doubly-perliodic stress
distributions 1is the quasiperiodic nature of the given displacements at the
contours r,, . For the symmetry of the problem, it 1s necessary that the
displacements at the contour [,, be symmetrical about axes x and y .

According to [3], the above problems can be reduced to finding two func-
tions @ (z) and qr(z» analytic in /), from the system of boundary conditions

e® (1) + @ (1) — {0’ (1) + ¥ ()} e = f; + if, (1.1)
1 . ’N — T for the 1st
&= {— % hitify= \— 2Ge'd (v -+ iu)/ds ro:a:xiag gﬁgblem

basic problem

TE Lmy (mn =0, +1, + ,...), =0 —pn/(1+np

Here, ¥ and T are the normal and tangential components of the forces,
acting on the contours of the holes, y and v are the displacements ia the
x and y directions, respectively, ¢ 1s the shear modulus, y 1is Poicson's
ratio, § 1is the angle between the normal to the contour of the hole and the
x-axlis and g 1s the coordinate distance along the curved contour [L,,.

The boundary conditions (1.1) on the system of contours [, can be re-
duced to a functional relationship on the ¢ontour of any one hole, if we sub-
Ject functions (D(z) and ¥(z) to the conditions, arising from the periodi-
city of the problem [2]

D (z + o) = D (2), D (z + w,) = D (2) (1.2)
¥ (z + o) =¥ (z) — 0,9 (2), V(iz4+ o) =V (z) — @, (2)

The conditions of symmetry lead to Equations

D=0, P(—2=0@; ¥Y@=F@ Y=Y (13

2, Let us investigate, in the region D , a system of functions formed
from the various derivatives of the functions

1 / 1 ' P P P
¥ (2) = ;5"]"%1{(—;—_—‘};—)2 - T,iy}, Q(2) =-§n{—(;—_——1—,)-2-—- ZZ.P—s -—P—z} (2.1)
z’=x-}—i1, P = mwy + nws '(m,n=0j:1,j:,...)

Here ¢(z) 1s the elliptic function of Welerstrass, and @(z) 1s the
speclal meromorphic function.

Our problem 1s to find functions (z) and W(z), analytic in [, satis-
fying conditions (1.2) and (1.3). Towards the end, let us establish the
necessary properties of the functions (2.1) and their derivatives.

We have the relationships

Q@+ o) =0 +a® (2 + 11
Q(z+ o) = Q(2) + B (2) + 72 (2.2)
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Indeed, substituting the function {2.1) into (2.2) and subsequently taking
the derivative of {2.2}, we find that the functions

Gi(e) = Q' (2 + &) — 39" (2) — Q' (2) (2.3)
Gy (2) = Q' (2 4 w) — B9’ (2) — Q' (2)
are analytic in the full g-plane, We have, therefore
Gy (z) = const, G, {z) = const (2.4

Let us assume In the first identdty {2.%) z =-4w,, and in the second one
z = ~ 4w, . Considering that the function ¢@’(z) 1s even and using the
equations in [4]

g () = 0, ¥’ (Vywg) =0 (2.5)
we obtain

G, (2) =0, G {2)=0 {2.6)
Integrating (2.6) leads to equations (2.2).

Let us examine the integral of the function ¢{z) along the contour of
the parallelogram with apexes (.3 (& + o), 0.5 {0y — o), — 0.5 (0, + »,)
and 0.5 (©0; — o,).

Considering the regularity of ¢(z) in the above parallelogram and Equa-
tions (2.2), we find
Ta0dy — T16y = 8,0, — 8,0, 8y = 2L (/0y}, §, = 28 (V) (2.7}

Here {{(z) is the zeta-function of Welerstrass. Thus, the values of v,
and vy, can be different from zero.

Differentiating (2.2) evenly, assuming in the resulting equations
z =~ gw, and z = — pw, and considering the fact that the function Q¥ (z)
is oad and 0% (2) (k = 0,1, ...), is given, we arrive at Equations
200 (Y 0)) = 0,9 (Y, @y), 1= 2Q (Yy0,) — o (Y, o) (2.8)
2009 (Y 0) = By 0@ (Yywa), T2 = 2Q (Va0 — 0y (Vy0)
Note that for regular triangular (@; = 2, ®, = 273} and square
{©; = 2, ®, = 2i) networks, we rave the relationship
8,®y — 8,0, = 0 (2.9)
In combination with the well lmown Legendre relationship [4]
8,@, ~ 8,0, = 2mi (2.10)
Equation {2.9) enables us tc obtain in a closed form solution the network
constants &,, 82, ¥, ANd vy .

To prove Equation (2,9), let us consider a regular network and perform
the transformation of the functions { (z), ¥ (z) and @ (2) from the argument
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z to zei®3, By virtue of the congruency of the system P = 2m + Znel™'3
and Pe-i*8 = 2n + 2me~'*3 (m,n = 0, +1, 4. ..) we have the relation-
ships

L (z672) = e==L (2), ¢ (z¢i3) = e2msp (2),  Q (s¢'%) = e3=3Q (2) (2.11)

Assuming in the first equation (2.11) 2z = g#w, and considering Equations
8, = 2¢(3w,) and &, = 2¢(3w,) , we arrive at the Equation (2.9).

Analogous conslderations are also valld for a square network.

From (2.9) to (2.11) and (2.7) we can find the magnitude of the constants
for regular networks.

a) Regular triangular network; @, = 2, @, = 2¢i%3

1 1 .
§, = . . = _ —in/3 = . = A2
1 V3 , 6- V3 e ’ T1 01 T2 0 (2 1 )

b) Square network; ©, = 2, ®, = 2i
&, = Yym, 8y = — Y,im, T2 = T T+ (2.13)
3, Let us seek functions (@ (z) and ¥ (z) 1in the form

bt AZk+2(2K) (2)
D (z) = oy + Eo 0‘21:+2W

hod AR+ (2K) () x A2Zk+2 () (2K+1) (z) .
¥ (@) =B+ 2 Boe~@r T 2 %"+2'—(21?_~'—1)!_— 3.1
k=0 k=0 '
Im oy = Im By, = 0 (k=0,1,...)

It 1s easy to show, using the identities (2.2), that Equations (1.2) are
here satlsfiled.

Further, i1t follows from the network symmetry that the perlodic systems
* - -
P = m(Dl + n(l)z and P = m*(-')l + n*o)z (m’ n, m*’ n* = 0, :*: 19 :ti .. -)
are congruent. Consequently, we have Equations

¢ (2, P) = ¢ (z, P), Q¥ (z,P) = Q¥ (5, P)  (3.2)
Thus

%)(‘_,k) (2) — w(gk) (z), Q(2k+1) (2) — Q(2k+1) ’(z) (3_3)

From Equations (3.3) it immediately follows that functions (3.1) satisfy
conditions (1.3). Thus, the requirements of periodilcity and symmetry are
satisfied. We would also note that the forms (3.1) can be obtained directly
from Equations (1.2) and (1.3).

We will now impose on Expressions (3.1) the condition that the resultant
vector of all the forces, acting on the curve Jjoining twe congruent points
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in p , be equal to zero., It is easy to see that this condition is equiva-
lent to Equations

gz + o) —g(2 =0 gz wy) —gzd) =0 (3.9
where
@ =0@+00@+9E, ¢@={0@d,  vo) =¥ d
Substituting Expressions {3.1} into (3.4} and considering Equations (2.2},
{2.7) and {2.9}, we obtain
oy = Kot ++ K, B,A%, Bo = Katth? + KB,A% (3.5)
& T - N el
K, "“g&"‘f{xv K, “‘Q“)—}‘*“ 2K, K, = 2K,, K, —“&m

Let us expand the functions (3.1) into Laurent series about zero

b A 2k-+3 o x
N 2k+2 ) ;
@ (2) = D e (‘;) b 20 sk DY g
K==0 R0 F=0
&= A k2 * x
. 2 NI 2512 N\ 93
V() = DBuals) 2 B 2 sy — 3.6)
k=0 ’ Je0 Gt
o0 00
N | ¥ 1558 QU X
— 2.[ (2IL _!.— 2:) d-zk.;.gkz 2 >_‘r Sj'kzg."
k=0 Fesgy
where
- @+ 2+ 1) g5 L ik,
BT L2k 1) | 22T PETT ) 12k L 2) 1 gk
r(),(jﬁ O, SQ,OIO
r 4 ¢ T - P : .
8= 2w P T = =m-+ nle® (i=2,3,..)
ki17%:3 7298 3

We shall assume, that it 1is possible to expand into a Fourler serles the
right-hand side of the functional relationship (1.1) on the contour L,
Due to the symmetry of the problem, this series has the form

oo
frtifa= 2 Aue?®,  ImAy=0 (3.7)
=0
Substituting the serdes (3.6) and {3.7) into Equations (1.1) on Lo, , We
shall get, after some transformatlons, an infinite algebraic system of equa-
tions for the coefficlents g,,,,
oo
1
Ggjre = D @5 40%krs + b G=01... (3.8)
k=0
where
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A+ 2j+2k+2
aj i = e J.’kx
*® : 2 44i+2
38244 (2t +-1) g7,,A (1 + ) KoKsA2
oo =g M He §1 R UEL R ey
_ (2k +2) Prs1 (2k +4)! gk+?.A'2 {1 + e) KsA? Ers1

To.k = 02h+2 21 2k + 2)! 22k+4 1 — (1 +4e) K1A2 22k+2 |

[o°] CO i+
e 2 (2k + 2i <-1)! g1'+1gk+i+}l“n ?
B (2/&' + 1)! (zl)! 22k+4’l+4

i=1

&+, @G+ gM (1+e)Koh?  &uy
Tin = = g + 21 (2 + 2)1 2%+ T + &) Kih? 2+2 +

k=1,2,...)

T § @27+ 2i4+ D! gi+1gj+i+17~4i+2
i=1 (25 + 1) (2i) 02j+4i+a
_ @+ 2k + 2 py gy + (27 <+ 2k + 4)! 8jakeah
(27 + 1)1 (2k + 1)1 259282 T (97 o\ op 1 o)) paitekee
Lo ST 2O 2+ D! Gt N
£0 @i D! @k 1)1 21+ 1)1 (20)) 22k

8iv18rnM (1 + e)2 Kyh ,
+ ;;;+2k++14 {1+1_(1+8)}(1p} (7, k=1,2,..))

i=1,2,...

+

Yix = T =

o0
_ AKA X Bk
&by = Az — y— 1o xm 2

Agks
@+ 1) AAT? &y E‘: (2] 4 2k 4 3)! g,y 2E2IH

e = duin — 1T oy ki e (@I)! (2% + 3)! 225+

—2k~-2
k=0

For the constants g,,,, we get Equations (3 9)

1 o Ers ;"2k+2
B = T Ao T () Koy + (1 4 o) D20 ay, )

k=1

hd 3
j (2 + 2k 4 3) g, .. A2T2RHL
. = 2 3 . vk .
Bzaﬂ (2 + 3) agjee -+ 8}2}0 @ F DIk T 1)

%_k+2‘—,’4_2j_2 (]=0,1, .- )

This concludes the construction of the solution.

4, We shall show, that if the holes 1n the network do not touch or inter-
sect, then, wlth certain assumptions on the loading, the forms (3.1), together
with Equations (3.8) and (3.9), give required solution.

It 1s easy to derive the following valid estimates
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M M
8l < lp,‘l<——w,‘, M>0 (:=23,..) (4.1)
where ¥ 1is some number, and A, 1s one half of the distance between two
closest congruent points.

Let the coefficlents 4,,, in the expansion (3.7), satisfy the 1lnequality

A5l <er, 4>0 k>0 4.2)

Under the conditlons (%.2), the system (3.8) has a unique finite solution,
with 1lim az,,, = O when J - = ,

Indeed, using (4.1), it 1s easy to get estimates (*) for the coefficlents and
free terms of the system (3.8)
(4.3)

. +2k+ j het h
lasa | <M (2 + ) 85¥, o <m{et 4 ()] 0<e =1 <!

As a result of the first estimate (4.3), the double sum z]a,,| converges,
which, together with the second estimate (4.3) provides a sufficient condi-
tion for the exlstance of a unique finite solution of the system (3.8).

Using the estimates (4.3), we get from (3.8)

: h+1
lazj+2l<M{(2f+1)62’+(2,.12) } 0<oCt g=01..) (44

The assertion has thus been proved.
Por values of B,,,, we have estimates

M{(4j2 —1) 8% (21.12)"}, 0<d<Ct  (i=01,..)
(4.5)

J sz+2 l <
Let us investigate the functions
o
AZEH2p(2h-1} ()
@ (2) = agz — azA?L (2)+ Z Oojes2 TEEFI

k=1

bd Azk+2p(k-1) (7 ABH2QE) (5)
P (2) = Boz — BA’C (2) + 1§1 szarz—(z_k-ﬁ——T)!_(_— 21 Ok TR T D)
- (4.6)

s@={0@wd  vo={¥Y@d

with 0 <8 <Cr <14, the series (4.6) converge absolutely and uniformly
in the closed region D°.

*) Under condition 0 < A < M, Expression 1 — (1L e)K;A? 1s non zero.
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Indeed, it is easy to show, that if sy is located in the part of p°,
inside the basic periodic parallelogram, we have the inequalitles

23 1 M

2lezpm|<pm  G=h2e (&7)

Using (2.1), we have the estimates in D°

Ptk (2)
TE=

M ) M
wa | dar<im =0t 69

Using (4.%), (4.5) and (4.8), we get

A2k+2p(2k-1) (2) g .
0o )‘2k+2?(2k-1) ( z) 0o e .
S A | D
2l o <Ak=l("’5 + ot

The assertion has thus been proved. The regularity of the functions ¢(z)
and y(z) in D and their continuity in D° follow from the relationship

Pzt o) =0@ +C, VYE+o)=9%0E)—0, O +a
9 (z+ o) =@ (2) + Cy, \b(z+m2)=\p(z)—62®(z)+az
which are satisfled by the series (4.6).

(4.10)

The basic problems for the doubly-periodic network, formulated in Section
1, could have been presented as boundary problems for the functions w(z}
and y(z) . Also, the system (3.8) and Equations (3.9) could have been
obtained starting from the representation {4.6}. All the operations per-
formed on (4.6) to obtain (3.8) and (3.9) are justified because of the abso-
lute convergence (4.6) in the closed region D .

Thus, if the constants qgi,.,, satidfy the sxstem (3.8), and the constants
Bsy+a 8re obtained from (3.92, then, with 0 <A < M, the series (4.6) define
two functions oql(z) and y(z) which are analytic in D and continuous in
p° and represent the solution of the stated problem.

B, Let us investigate the problem of reducing the doubly-periodic net-
work to &n equivalent uniform sheet.

Let there be in the network the average stresses o,°- G, a,"s g, and
Tey= 1,2 = 0 . The functions &(z) and ¥(z) have here the form

D, (2) = Y, (55 + &) + O (2), W, (2) = Yy(6, — 5 + ¥ (2)(5.1)
where #(z) and ¥(z) are defined by the series (3.1).

It 18 easy to see that the displacements, 1in the class of problems defined
by the functions (5.1), are quasiperiodic functions.
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Indeed, the displacements have the form [ 3]
2G (u + iv) = k; (3) = ug, (2) — 2D, (2) — Y, (2)
0,0 = (@ @) dz. v, () =¥ (2d

Let us assume
Q = he(z 4+ @) — Ay (2), Qy = hy (z + 0y ~ ks (2) (5.3)

Substituting the series (4.6) into (5.3), and using (5.1), (2.2) and (2.8)
we get

(5.2)

o1 4 834 — -8 o A
Q = 12 21—%—5‘91_622610’1’%-%7&2(Tx“"ﬁl)‘i‘gzméi'*”

+{x — 1) oo, — ga[gx

(5.4)
O -oal— — G1 y Ky .
Q, =2 z ’1 T r; 0y — 2 5 % 0 + aph? (1 — %By) + BsAT8a+ (4 —1) g2 —Bowe

Let us now consider an orthotropic uniform sheet under uniforam tension
6, ‘5;’ 0,, '53, Tﬂ“O »

Hook's law, for an orthotropic medlium, has the form [5]

¥ *
Gy hs's, Sy pa*s, Ty

B=FF T e T EF T EY o Tw T G

E*p* = Eg*w*  (5.5)

Here £, * and g£,* are the moduli of elasticity in the directlon of the
main axes x and y , u,* and uy* are the corresponding Poisson's ratios
and ¢* the modulus of the elastisity of the second type.

From (5.5), we can find the displacements of polnts in the uniform sheet

B* (z) .z 1 —p* 1 —pa* z 14+t 14 pa*
0 u+ iv = 5 (61 Ex* -+ Gy it ) + 5 (51 e - Oy B )
From here we have {5.6)

QF = 1 (o + ) — % (3) = Goy (o L5 1 o IE) 4

+G"0;1(511+p,1* _—521-4}««”‘%*)

B Eq*
. T
Qo* = h*(z + @g) — h* (2) = G (51 ! Ef:i* + %2 ! Eﬁz ) +
_ 1 ,, * 1 L *
+ Gay (5 HEET — o L) .7)

Equations {5.7) establish the quasiperiodicity of the displacements (5.6).

We shall now introduce the equivalence notlion between the uniform sheet
and the doubly-periodic network. In general, an equivalent uniform sheet 1s
understood to be a sheet, the stiffness of which 1s equal to the stiffness
of the sheet with the holes. This meéans, that under the same loading the
average displacements of such sheets are equal. For the class of problems
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under investigation, these displacements are quasiperiodic functlons.

We shall denote the doubly-periodic network and the uniform sheet as equi-
valent, 1f under the same loading we have equalitles

Q, = Q*, Q, = Q,* (5.8)
where 0, and 0, are defined by (5.4), and 0,* and 0 by Equations (5.7).

Equations (5.8) reflect the fact that the displacements of any point =
relative to 1ts congruent polnt 2z + mw, + nuw, (m, n =0, #1, %,...) in the
uniform sheet and in the doubly-periodic one are equal.

Substituting Equations (5.4) and (5.7) into (5.8), we get

adalobe, 2 o ElG L 1ER o (1 — xd)) + B A, +

‘[’"(”_1)0‘0(01‘—3061} =%(°1 1—!11 + o —5— 1—llz )+

+w1(611+l11' —s 1+|12"‘)

2 Ex* 2RSS
(5.9)
atolto,— °’;°‘1+“m2+1+“{am — ;) + BA%S, +
+ (0 — 1) g — B} = 3 (01 T o )
o) 4+t 1+uz
+?(61 E* — G2 Eq*- )

Expressions (5.9) provide a complete system of equations for the deter-
mination of the three independent reduced elasvic parameters g% EF *and u*.
For the determination of the fourth parameter @¢* we can form analogous
expresslons for average stresses 0,=0,=0, T,= T .

We shall form them for the case of a square network.

Let us first assume in (5.9) that ¢,= g,= ¢ . Then, the first equation
(5.9) ylelds
E*/(l—p® _ . -1
Sy — o 4,802 — (8, + 4K) azl?]} (5.10)
Here a, and B, must be obtained from the solution of the corresponding
doubly-periodic problem with average stresses o0,= 0= ¢, T,,=0 .

Further, multiplying the first expression (5.9) by wy, the second by w,,
subtracting the second expression from the first and using (2.7) and (2.10)
we obtain

e = {_ﬂﬂ_+ 2(1 + )M} (5.11)

W13 — W10a W10 — @1
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In Equation (5.11), the value of g, is the same as in Equation (5.10).
Let now the average stresses be ¢, = —g,= 0, 1., = O .

From the first equation {5.9), we obtain

E* /() N A% 1
Ers = |4+ KB — s (8 + 4Ky | (5.12)

Here, the value of g, and 8, must be determined from the solution of
the doubly-periodic problem with average stresses o,=—@;=¢, T,= 0.

Combining the first and second expressions (5.9}, we obtain an equation
equivalent to (5.11}.

Let us investigate the case, more interesting {rom a practical point of
view, of & regular network. In this case, in solving the doubly-periodic
problem with average stresses o, = @z~ ¢, T = 0 the magnitude of qu= 0
and B, 18 non zero. Consequently, from-(5.11} we obtain

E®* = E* = E* {5.13)
Further, from {3.5) we find

mgie=h (=39 40

" Bsina

Substituting the value of &, from (5.1%} into Equations (5.10) and (5.12)
and considering the fact that in the sclution of the problem with average
stresses 0,=-—QU,= 0, Tu = 0 , we have g,= 0 and qo,# O , we obtain

a) Regular triangular network; wy = 2, @, = 2¢\"/3

BA—p [y, o BT Elddpt [y 2n et |
£l —w -—[i-{~ ]/‘51——41,} 4 Eld+w [1 ] (5.15)

¥V3itw
b) Square network; @©; = 2, ©, == 2i

Ex{(t —p*) n BaA? 171 Bri(t+p%) [y _ oght L 18
e =t il Few [t—nty] ©19)

Since the regular triangular network is isotropic in the sense of the
reduced elastic parameters, it follows that Equations {5.15) determine fully
the elastic characteristics of the equivalent uniform sheet,

Por the square network it is necessary to determine the magnitude of a*,
Por this reason, let us investigate a doubly-periodic network with average
stresses O,= gz« 0, 1, = 71 .

Performing an anticlockwise rotation of the coordinate system of 45°, we
change the problem to a symmertical one with average stresses, in the new
coordinate system Z'oy’: 6¢° = — op° = T, Toy = O.
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Following the same steps as in the derivation of Equatilons (5.9), we
obtain

gl

nl g nl_

E)1’ + ay)? (?1' — %8,") — ah? (8; + ?1') =

+ (5.17)
. o, ! ’ 1 E
@y + ah? (15 — %8,") — aA? (8, + 1)) = TIp2

where the primed quantities refer to the basic periods @, = 2¢~*"4 and
®, = 2¢'™/4 of the network in the system of coordinates x’oy’.

Using the following easily established equalities
8 = Biei™h, 8y = Bgei, 7y = meSth, ) = retit (5.18)
we obtain from (5.17)

T =[t-mrl 649

The condition of compatibility of Equations (5.17) is the relationship
(2.9) which is satisfied for regular networks.

We present the results of the calculations of stresses G, (A4) and Gy (B)
at representative points 4 and B . To check the boundary conditlons, we
also show the values of the stress 0,(5) at point 3 .

1. Regular triangular network; ; =2, w, = 2e"'/3, the edges of the holes
are force free

a) Average stresses 0, =1, g, =1, 13=0

A=02 0.4 0.6 0.8 0.9
G (4) = 1.10 1.45 2,27 4.70 9.66
6p (B) = 2.07 2.35 3.09 5.70 10.70
6, (B) = 0.0000 0.0000 0.0000 0.0004 0.0087

b) Average stresses 63=1, 0, =0, T3 =0

A=0.2 0.4 0.6 0.8 0.9
6g (4) = 1.03 1.23 2.00 4.72 9.20
S (B) = 3.09 3.31 3.62 5.55 10.70
6, (B) = 0.0000 —0.0000 0.0018 — 0.008 0.060

2. Regular triangular network, the holes contain rigid rings
a) Average stresses ¢, =1, 0a=1, T3 =20

A=0.2 v.4 0.6 0.8 0.9
o, (4) = 1.01 1.04 1.10 1.20 1.47
s, (B) = 1.51 1.43 1.32 1.27 1.55
ag (A) = 0.95 0.81 0.61 0.38 0.26
Gy (B) = 0.45 0.43 0.40 0.38 0.26
b) Average stresses o, =1, 0= 0, T3 =0
A=0.2 0.4 0.6 0.8 0.9
r(4) = 1.08 1.23 1.43 1.64 1.90
or (B) = 1.49 1.44 1.44 1.59 1.90
o (4) =—0.03 —0.09 —0.08 0.12 0.32

cg (B) = 0.44 0.43 0.43 0.46 0.46
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3.
free

L.A. Fil'shtinskii

Square network; m; = 2, 0, = 2{; the edges of the

a) Average stresses 0, =1, O,=1, 7,=20

A= 0.2 04 06 0.8
6g (4) = 1.10 1.46 2.25 4,65
5y (B) == 2,07 2.36 3.19 5.75
s, {B) = 0.0000 0.0001 0.0001 —0.0050
b) Average stresses O,=1, 0;, =20, 1,=0
A=02 0.4 0.6 0.8
Gy (A) = 1.15 1.34 2.10 4.63
Gy (B) = 3.00 3.11 3.61 5.78
6, (B) = 0,0000 —0.0002 —0.0009 —0.0017

Square network and the holes contain rigid rings
a) Average stresses o; =1, 0, = 1, 1, =0

A= 0.2 0.4 0.6 0.8
s, (4) = 1.02 1.08 1.18 1.44
s, (B) = 1.51 1.45 1.39 1.48
Gy (A) = 0.95 0.80 0.58 0.35
og (B) = 0.45 0.44 0.42 0.45

b} Average stresses o; =1, 6,=0, 1, =0

A =02 0.4 0.6 0.8
6, (4) = 1.07 1.25 1.48 1.74
6, (B).= 1.50 1.50 1.52 1.71
Sp (A) = 0.02 —0.04 0.00 0.20
3y (B) = 0.45 0.45 0.46 0.51

holes are force

0.9

9.58
10.63
—0.0289

0.9

9.51
10.60
—0.0060

0.9

1.86
1.83
0.41
0.56

0.9

212
2.08
0.43
0.65

Using the solutions to the problem given above, we can establish the

reduced elastic par

ameters of regular

networks
] The curves of EF*%/Z and u*/u for
r3 regular triasngular networks, when the
/ & edges of the holes are force free, are
H given in Fig.2.
!
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R \\ \
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Fig. 2 Fig. 3
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For the case when the holes contain rigid rings, the respective values
are given in Fig.4.

£
| ]
y /ﬁ: ¥
E
161
1z
‘ 7 2 7
™~
L 1A 4 A
g 1 g 7
Fig. % Flg. 5

The curves of Z*/Z, u*/u and @*/¢ for a square network, when the
edges of the holes are force free, are given in Fig.3.

The variations of the same variables for the case when the holes contain
rigid rings is shown in Fig.5.

In conclusion the author expresses his thanks to L.M.Kurshin for useful
comments and valuable advice.
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